Numerical control (CNC) (also computer numerical control (CNC)) is the automated control of machining tools (drills, boring tools, lathes) and 3D printers by means of a computer. A CNC machine processes a piece of material (metal, plastic, wood, ceramic, or composite) to meet specifications by following a coded programmed instruction and without a manual operator.
A CNC machine is a motorized maneuverable tool and often a motorized maneuverable platform, which are both controlled by a computer core, according to specific input instructions. Instructions are delivered to a CNC machine in the form of graphical computer-aided design (CAD) files, which are transformed into a sequential program of machine control instructions such as G-code, and then executed. In the case of 3D Printers, the part to be printed is "sliced", before the instructions (or the program) is generated.
CNC is an advance machine, and is a vast improvement over non-computer type machining that requires manual control, by hand wheels or levers, or mechanical control by fabricated pattern guides (cams). In modern CNC systems, the design of a mechanical part and its manufacturing program is highly automated. The part's mechanical dimensions are defined using CAD software, and then translated into manufacturing directives by computer-aided manufacturing (CAM) software. The resulting directives are transformed (by "post processor" software) into the specific commands necessary for a particular machine to produce the component, and then are loaded into the CNC machine.
Since any particular component might require the use of a number of different tools – drills, saws, etc. – modern machines often combine multiple tools into a single "cell". In other installations, a number of different machines are used with an external controller and human or robotic operators that move the component from machine to machine. In either case, the series of steps needed to produce any part is highly automated and produces a part that closely matches the original CAD.